Copied to
clipboard

G = C3×C22.11C24order 192 = 26·3

Direct product of C3 and C22.11C24

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C22.11C24, C6.1492+ 1+4, (C4×D4)⋊5C6, D47(C2×C12), (C6×D4)⋊23C4, C427(C2×C6), (C2×D4)⋊11C12, (D4×C12)⋊34C2, C233(C2×C12), C42⋊C26C6, (C4×C12)⋊38C22, C6.59(C23×C4), C2.7(C23×C12), C24.12(C2×C6), (C2×C6).338C24, C4.19(C22×C12), (C22×C12)⋊5C22, (C22×D4).10C6, (C2×C12).709C23, C12.164(C22×C4), (C6×D4).332C22, (C23×C6).11C22, C22.2(C22×C12), C23.34(C22×C6), C22.11(C23×C6), C2.1(C3×2+ 1+4), (C22×C6).254C23, C4⋊C420(C2×C6), (C2×C4)⋊4(C2×C12), (D4×C2×C6).22C2, (C2×C12)⋊25(C2×C4), (C3×D4)⋊27(C2×C4), (C2×C22⋊C4)⋊5C6, (C22×C6)⋊5(C2×C4), (C22×C4)⋊4(C2×C6), (C3×C4⋊C4)⋊77C22, C22⋊C418(C2×C6), (C6×C22⋊C4)⋊10C2, (C2×D4).78(C2×C6), (C2×C6).33(C22×C4), (C2×C4).56(C22×C6), (C3×C42⋊C2)⋊27C2, (C3×C22⋊C4)⋊72C22, SmallGroup(192,1407)

Series: Derived Chief Lower central Upper central

C1C2 — C3×C22.11C24
C1C2C22C2×C6C2×C12C3×C22⋊C4D4×C12 — C3×C22.11C24
C1C2 — C3×C22.11C24
C1C2×C6 — C3×C22.11C24

Generators and relations for C3×C22.11C24
 G = < a,b,c,d,e,f,g | a3=b2=c2=e2=f2=g2=1, d2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede=gdg=bd=db, fef=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, df=fd, eg=ge, fg=gf >

Subgroups: 514 in 338 conjugacy classes, 242 normal (14 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C42⋊C2, C4×D4, C22×D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C22×C12, C6×D4, C23×C6, C22.11C24, C6×C22⋊C4, C3×C42⋊C2, D4×C12, D4×C2×C6, C3×C22.11C24
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C12, C2×C6, C22×C4, C24, C2×C12, C22×C6, C23×C4, 2+ 1+4, C22×C12, C23×C6, C22.11C24, C23×C12, C3×2+ 1+4, C3×C22.11C24

Smallest permutation representation of C3×C22.11C24
On 48 points
Generators in S48
(1 35 11)(2 36 12)(3 33 9)(4 34 10)(5 30 14)(6 31 15)(7 32 16)(8 29 13)(17 37 41)(18 38 42)(19 39 43)(20 40 44)(21 27 45)(22 28 46)(23 25 47)(24 26 48)
(1 39)(2 40)(3 37)(4 38)(5 28)(6 25)(7 26)(8 27)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(29 45)(30 46)(31 47)(32 48)(33 41)(34 42)(35 43)(36 44)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(2 40)(4 38)(6 25)(8 27)(10 18)(12 20)(13 21)(15 23)(29 45)(31 47)(34 42)(36 44)
(1 15)(2 16)(3 13)(4 14)(5 34)(6 35)(7 36)(8 33)(9 29)(10 30)(11 31)(12 32)(17 45)(18 46)(19 47)(20 48)(21 37)(22 38)(23 39)(24 40)(25 43)(26 44)(27 41)(28 42)
(2 40)(4 38)(5 28)(7 26)(10 18)(12 20)(14 22)(16 24)(30 46)(32 48)(34 42)(36 44)

G:=sub<Sym(48)| (1,35,11)(2,36,12)(3,33,9)(4,34,10)(5,30,14)(6,31,15)(7,32,16)(8,29,13)(17,37,41)(18,38,42)(19,39,43)(20,40,44)(21,27,45)(22,28,46)(23,25,47)(24,26,48), (1,39)(2,40)(3,37)(4,38)(5,28)(6,25)(7,26)(8,27)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(29,45)(30,46)(31,47)(32,48)(33,41)(34,42)(35,43)(36,44), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,40)(4,38)(6,25)(8,27)(10,18)(12,20)(13,21)(15,23)(29,45)(31,47)(34,42)(36,44), (1,15)(2,16)(3,13)(4,14)(5,34)(6,35)(7,36)(8,33)(9,29)(10,30)(11,31)(12,32)(17,45)(18,46)(19,47)(20,48)(21,37)(22,38)(23,39)(24,40)(25,43)(26,44)(27,41)(28,42), (2,40)(4,38)(5,28)(7,26)(10,18)(12,20)(14,22)(16,24)(30,46)(32,48)(34,42)(36,44)>;

G:=Group( (1,35,11)(2,36,12)(3,33,9)(4,34,10)(5,30,14)(6,31,15)(7,32,16)(8,29,13)(17,37,41)(18,38,42)(19,39,43)(20,40,44)(21,27,45)(22,28,46)(23,25,47)(24,26,48), (1,39)(2,40)(3,37)(4,38)(5,28)(6,25)(7,26)(8,27)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(29,45)(30,46)(31,47)(32,48)(33,41)(34,42)(35,43)(36,44), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,40)(4,38)(6,25)(8,27)(10,18)(12,20)(13,21)(15,23)(29,45)(31,47)(34,42)(36,44), (1,15)(2,16)(3,13)(4,14)(5,34)(6,35)(7,36)(8,33)(9,29)(10,30)(11,31)(12,32)(17,45)(18,46)(19,47)(20,48)(21,37)(22,38)(23,39)(24,40)(25,43)(26,44)(27,41)(28,42), (2,40)(4,38)(5,28)(7,26)(10,18)(12,20)(14,22)(16,24)(30,46)(32,48)(34,42)(36,44) );

G=PermutationGroup([[(1,35,11),(2,36,12),(3,33,9),(4,34,10),(5,30,14),(6,31,15),(7,32,16),(8,29,13),(17,37,41),(18,38,42),(19,39,43),(20,40,44),(21,27,45),(22,28,46),(23,25,47),(24,26,48)], [(1,39),(2,40),(3,37),(4,38),(5,28),(6,25),(7,26),(8,27),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(29,45),(30,46),(31,47),(32,48),(33,41),(34,42),(35,43),(36,44)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(2,40),(4,38),(6,25),(8,27),(10,18),(12,20),(13,21),(15,23),(29,45),(31,47),(34,42),(36,44)], [(1,15),(2,16),(3,13),(4,14),(5,34),(6,35),(7,36),(8,33),(9,29),(10,30),(11,31),(12,32),(17,45),(18,46),(19,47),(20,48),(21,37),(22,38),(23,39),(24,40),(25,43),(26,44),(27,41),(28,42)], [(2,40),(4,38),(5,28),(7,26),(10,18),(12,20),(14,22),(16,24),(30,46),(32,48),(34,42),(36,44)]])

102 conjugacy classes

class 1 2A2B2C2D···2M3A3B4A···4T6A···6F6G···6Z12A···12AN
order12222···2334···46···66···612···12
size11112···2112···21···12···22···2

102 irreducible representations

dim11111111111144
type++++++
imageC1C2C2C2C2C3C4C6C6C6C6C122+ 1+4C3×2+ 1+4
kernelC3×C22.11C24C6×C22⋊C4C3×C42⋊C2D4×C12D4×C2×C6C22.11C24C6×D4C2×C22⋊C4C42⋊C2C4×D4C22×D4C2×D4C6C2
# reps14281216841623224

Matrix representation of C3×C22.11C24 in GL5(𝔽13)

30000
09000
00900
00090
00009
,
10000
012000
001200
000120
000012
,
120000
01000
00100
00010
00001
,
50000
00010
00001
01000
00100
,
120000
01000
001200
000120
00001
,
10000
00100
01000
00001
00010
,
10000
01000
00100
000120
000012

G:=sub<GL(5,GF(13))| [3,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[5,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0],[12,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12] >;

C3×C22.11C24 in GAP, Magma, Sage, TeX

C_3\times C_2^2._{11}C_2^4
% in TeX

G:=Group("C3xC2^2.11C2^4");
// GroupNames label

G:=SmallGroup(192,1407);
// by ID

G=gap.SmallGroup(192,1407);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,672,701,555,1571]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=e^2=f^2=g^2=1,d^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e=g*d*g=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*f=f*d,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽